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This study showed the application of explicit Euler and Milstein for solving a Geometric Brownian
Motion (GBM). Using the Euler explicit scheme, it was observed that when the price of an asset at the
initial time is positive, then the volatility of the asset is always positive; while if the price of the asset at
the initial time is negative, the volatility of the asset is also negative. The GBM, discretizing in time T
= 2, using the explicit Euler Scheme with constant volatility and drift shows the cffect of random walk
in stock prices. This shows that the degree of random walk is not entirely centered, and as such with
timely variation of the drift and parameters can savage the stock price situation also the GBM through
explicit Milstein scheme produced a chaotic process whose random walk is clustered with constant
drift and volatility paramcters. This suggests that the stock price situation will unlikely be savaged if

the stock price market is sabotaged.
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INTRODUCTION

In deterministic differential cquations, the
consequence of random noise in the
mathematical modelling of real-life situations
is often ignored. It was noted that such
cquations only considered the mathematical
framework  of the system  average
(Cyganowski, 2002). However, when
nonlinearitics arc involved in the model, it is
required to present the complete performance
of the model to access its behaviour. This is
where the conception of stochastic differential
equations is introduced. Stochastic differential
cquation describes the consequence of random
noise within the physical systems. Stochastic
differential cquations have found many
applications in science and technology such as
Physics, Chemistry, structural mechanics and
scismology, optical bistability and fatigue
cracking, financial mathematics, mathematical
biology, radio-astronomy, turbulent diffusion,
ctc. (Kloeden & Platen, 1992). A stochastic
differential cquation (SDE) is a diffcrential
cquation in which onc or morc of the
expressions are a stochastic process, ensuing in
2 result which is also a stochastic process.

Typically, SDEs have a variable which represent
random white noise considered as the derivative
of Brownian motion or the Wiener process.
However, other types of random behaviour arc
possible, such as jump process. Early work on
SDEs was done to describe Brownian motion in
Einstein's famous paper and at the same time by
Smoluchowski (Li and Liu, 2017); though, onc of
the previous works associated to Brownian
motion is credited to Bachelier (1901) in his
thesis 'Theory of Speculation’. This work was
followed by Langevin, and later Ito -and
Stratonovich placed SDEs on more Solid
mathematical footing. Itd (1944) laid the
foundation of a stochastic calculus known today
as the Itd calculus. This represents the stochastic
generalization of the classical  differential
calculus, which models various phenomena in
continuous point in time such as the dynamics of
stock prices, physical systems or the motions of a
microscopic  particlc  subject to  random
fluctuations. The corresponding  stochastic
differential cquations (SDEs) generalize the
ordinary deterministic  differential  equations
(ODEs). In general, 1-dimensional Ito stochastic
differential cquation has the form
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where @) s callad the dnft ooeflicient
(Which  vartes  slowh)l and S\ 8 the
Jdiffusion  ooeflivient (@ mapidly  vanving
auuponent), W ois 2 Wiener provess W =
{5 €2 0F that defines the mndomness of the
phasical sistem, and it is often callad the white
noise, The subeeript ¢ i the whitt noise
represents nasdependenae.

The Wiener provess is the stmplest intrinsic
npotse temm that adaquately madel Brownitan
motion. The integral form of Equation 1 is

X = XNo+ [5 @(Xdds + [[AN)EW,e 20
Q)

The first integral in Equation 2 is a Volterm
intepral and the sovond integrml is an Qo
stochastic integral or an integral stochastic
aquation  with  respevt t©  the  Wiener
provess W= (W, £ 2 0F. More so. the savond
integral is not governad by the classical nule of
calculus, This causad a periad of stagnation in
resolving this problem. However, it was not
until the 1980s when 10 proposad  his
definition of the o inwgmal that providad
insight in resolving the sovond  integml
(Coomer, 2001)

uman lik and human envinament are
inherently nonlincar and  stochastic.  Many
wodel parameters that define any mathematical
coastruction can only be estimatad and also on
the undsniable fact that many mathematical
madels are an approximation to reality. Thus
the numerical methads are raquined bevause it
is  difficult w0 solve SDEs  analytically.
Unfortunately, there was no explicit numerical
method for stochastic difterential oquations,
until the advent of digital super computers.
Numerical methods such as the Euler's
scheme, Milstein’s  scheme and  Taylor's
scheme, etc,, were all implementable on digital
computers.

The Taylor expansion is the badroek for
developing  numerical  approximations  in
deterministic calculus, so it is in stochastic
numeric. Since the focus is on stochastic
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calculus: thus, a fist onder stochastic Tayier
axpansion has the torm

a(X) = g(\o) + LPa(Xo) f‘ ds + 1} g(.\'o)_f; dW; 5,

where
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and X is the remainder e, By applying the
openttor (Fquation 4) repeatedly, higher order
stochastic Tayvior expansions were obtained.

Over the yveary, there are literatures that treatad

numerical  approximation  techniques o
stochastic  ditferential - oquations  (SDEs.

However, there is still a wide gap between the
shystematic theon of SDEs and its applications. I
this study, this gap will be narmowad by exploniag
the numerical methads and their applications ©
Goaometric . Browndan Moton  (GBM). Al
compuiational frameworks in this study  ace
carriad out with Maple 18 software.

Geometric Brownian motion (GBM)

The Geometric Brownian Motion (GBM) (also
Known as exponential Brownian motion) is most
relovant in stoek prices as it incorponaes the
fundamental of random walks in stk prices. A
lot of rescarchens (Sengupta, 2004 Ladde and
W, 2009 Wy lomanska and Gajda 2012; Brewer
¢t al, 2012; Abidin and Jatfar, 2013) over I
vears have usad the GBM as a model in anay 3w
the dogree of mndomness i stoek prices.

The GBM is a stochastic process 82) - whish =
governad by the stochastic ditferential oquation
(SDE)

) :‘ N e
-5\-;.‘ = u(e) &+ o) FWY)

where
p=p() isthe dnft parmeter
o=a(s) isthe volatlity pammeter

and

Wi isthe standand Wiener provgss.
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The explicit culer approximation

The Euler approximation (EP) is one of the
¢lementary stochastic time discretization
approximations of an Ito process (Reddy and
Clinton, 2016). The scalar stochastic
differential equation (SDE) of an Ito process is
givenas W = {W,,t = 0}

dX, = a(t.Xt)dt + B(t’,xt)th, t= 0,
(6

with the initial condition
X'o = Xo.

Discretizing (6) in time in the interval (&g, T,
we have

b=V <n<p<-<p<-<y=T

which is a continuous Euler’s approximation
satisfying the scheme

Xn’rl = Xn t a(}’nuxn)()'nﬂ - Yn) t ﬁ()’n:xn)(wym - Wy,,)

)

for n=01)(N-1), with the initial
conditions

K=o, X =X(r) o

for all. values of n at y, (discretization time).
Now, let us write

An= Ynt1 ~Th
9

to denote the maximum nth time increment and
call

§ = max, An_ -

The maximum step in time increment
Let the equidistant time discretization be

Nigerian Joumal of Science and Environment, Vol.18 (1) (2020)

Yne1 =Vn + 6
or
1 = Yn +né

(n

Thus, § = (T;Nt“z for N is large enough to cnsure

§ € (0,1).
When B(t, X.) = 0 in (6), the iterative scheme (7)

reduces to an ordinary differential equation

dX, = a(t,X,)dt (12)

with the deterministic Euler scheme given as

Xni1 = Xn + @, Xn) Ynar — Ya)» n=0(1)(N —1)
(13)

The main difference between the stochastic
iterative scheme (7) and the deterministic Euler
iterative scheme is the term

AW, =Wy, =W, n=0D(N=1) 0

where W = {W,, t = 0} is a Wiener process.
Chapter two acknowledges that

EWA,) =0, and E[(WAp)?] = tnyy — ty =
A, = =

arc Gaussian random variables (which are
independent).

Using the above notations, the Euler discrete time
approximation was rewritten as

Xns1 = X, + ad, + BAW, 1%

An illustration of the simulation of the Euler’s
time discrete approximation is given below:

Let the Ito process W = {W,, t = 0} satisfies the
lincar SDE .

dX, = aX.dt + fX.dW,, t =0, ‘ a6

with the initial condition x, € R,
Here, the drift ccefficient is

a(t,X) = aX

and diffusion coefTicient is
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B(t,X) = BX

Now to stimulatc a samplc path of the Euler
scheme for (16), the initial approximation was
taken from the initial valuc X, = X,, and
proceed to gencrate respectively using

Xns1 = Xn + (o, Xn )8y + B, Xp)AW 0 = 0,1,23, .,
(17)

with drift and diffusion cocfficients well
defined.
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For instance, if
= qe=X(®) 1 1p2,-X(t)
a(t,X) =ae + zﬂ e ,

Be-x(t)

with initial condition X,, = Xo = 1.0.

Sample path can be generated for this stochastic
process (in order to do this, numeric values must
be assigned to @ and f#). To this effect, let
a=0.1 and f =0.5 bc chosen arbitrary, the
sample path with 100 time-steps is generated in
Figurc 1.

V4

Time

Figure -..Pc:‘hPIot(cX () (=0.3, timesteps = 100, replications = 1).

Strong convergence of the explicit Euler
scheme

An approximaiing s.ochastic process X
. converges in strong scasc if there is cxisting
constant K and Ag> 0 with order T € [0, )
- satisfying E(IXr — Xy) = K& ‘with a
maximum stcp sizc L€ (0,4,) in any time
_ discretization.  When f#=0, thec strong
convergence of the stochastic Culer scheme
bccomes a  mere - deterministic  Euler
convergence scheme for the approximation of
ordinary diffcrential cquation.

According to Milsicin (1974), this strong
convergeace critcrion is 2 mcasurc of the
absolute crror at the final time interval T given
as

€(Bo) = E(IXr — Xy 1).

which can be deduced applying the Lyapunov-
incquality coupled with the root mean square
error to be

c(A) = E(1Xr — Xy1) < VE(XT — Xn|%)

Platen (1981) and Kloeden (1992) argued that the
order of strong convergence mechanism is much
higher in the deterministic case than the
stochastic casc. In fact, the Euler approximation
(7) has a strong convergence of order T = 0.5 in
contrast with the Euler-approximation for
deterministic  ordinary  differential  cquation,

which has a strong order 7.= 1.0,



The thcorem below is relevant in cstimating the
order of convergence of the stochastic cxplicit
Euler scheme.

Theorem 1: Kloeden and Platen (1992)
Assuming that

(ki) <o

(18)
E(|Xr - x,glz)% < K82 a0
la(t,x) - a(t,y)| + 1B(t.x) = B(EY)| < Kylx — ]
| (20)
la(t,x)| + |B(t,x)| < K3(1+ |x]) an

and

a(5.9) - at, )] Bs) - B )] € KoL+ el -

(22)

for all s,t €[0,T] and x,y € R* | where
K;,i = 1(2)4 arc indcpendent of Ag. Then for
the EP the estimate

1
E(IXr — Xx|?) < K54 X
(23)

Holds, where K is independent of A,
(Klocden and Plaica, 1992)

Weak convergence criterion of the stochastic
cxplicit Euler scheme

An approximaiing stochastic process X
converecs in weak scnse, when there exist a
constant K and Ay> 0 (a positive constant)
with order it € (0, o0] and a polynomial f such
that

E(f(Xr)) - E(f(Xx)| < KA

with a maximum sicp size A€ (0,4,) in any
time discretization. When # =0, the weak
couvergence is the deterministic gonvergence
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critcrion for the approximation of ordinary
diffcrential cquation with f(x) = x.

Talay (1984) and Milstein (1978) stated that the
cxplicit Euler-Maruyama approximation of a
stochastic process has a weak order of 1.0, which
is far supcrior to its strong convergence of order
0.5. Similarly, Platen and Mukulericius (1986)
providc that thc Euler-Maruyama converges with
a weak order of 1.0 when the drift and diffusion
cocfficient of (7) are Holder continuous and
Lipschitz continuous with fractional power.

The cexplicit Milstein scheme

Recall that the stochastic Taylors Formulac (STF)
for thc SDE (7) in the interval to <t <T is
given as '

gk = o) £ {0k, ) s+ o)+ &(,) [, o, <R,

(24)

where, :
dy(£,%) = a(t, x)g (¢,%) +3(B(6.%)) g (&),

dZ (t' x) = ﬁ(tv x)g’ (tr x)-

d3(t,x) = B(t, x){B(t.x)g"(t,x) + B (t.x)g (t.x)}

Now, if we let g(t,x) = x in the STF (24), we
obtain

Xe= X+, ) [ ds+ B(X) [, W, + B0, )B(X,) [, [ v, ), + R

25)

which is 2 morc general STF representation of the
SDE (6) (Reddy and Clinton, 2016)

Now, if the last term of (25) is added to the
numecrical scheme in (3.21), the obtained Milstein
scheme will be given as

Xus1 = Xy + aby + BV, +3BB ((AW)? - 8,), m=0()(N -1)
' (26)

Here, the additional term came from the double
stochasiic integral in (25), which can be
computed using the Wiener increment AW,

S 172 aW,, dWy, = 3 {(AW,)* = B,)
@7

)] '
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Generally, adding morc stochastic intcgral
tcrms in multiplicity to (24), a morc strong
Taylor approximation (STAs) was obtained.
Such stochastic intcgral tcrms provides
additional information about the discretized
samplc path. The thecorem below gives
conditions for Milstein scheme to cnsure strong
convergence of order T = 1.0.

Theorem 2: (Klocden and Platen, 1992)
Assuming that

E(IXr]?) <o 28)
E(IXr = Xy[?) < Ki83 (29)
|a(t, %) - a(t, )| < Kalx — y| (30)

|B71(t, x) = B (t,y)| < Kalx =yl
|Lrpiz(t,x) — Lrpia(t,y)| < Kalx -yl
|a(t, )] + |U a(t,x)| < Ks(1 + [x])

@GN
|82 (t, )| + |V B2(t, x)| < K3(1 + |x])
| 1 B2 (t,x)| < K3 (1 + x])
and
la(s, x) — a(t,x)| < K. (1 + [x])|s — t|§
(32)

B7:(5,%) = B (6, x)| < Ka(1+ [x)ls — 2
|LBs2 (s, x).— LI pl2(t,x)| < K, (1 +

[xIs — t]z

for all s,t € [0,T) and x,y € R%,j =0,...,m,
and jy,j; = 1,..,m, where K, i =1(2)4 arc
indcpendent of  Ag. Then for the Milstein
scheme the estimate

1
E(Xr - Xnl?) < KsAY . -
(33)

holds wherc Kj is independent of Ay,
(Sce the proof in Klocden and Plater, (1992) -
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RESULTS

Euler and Milstein schemes for the geometric
Brownian motion

Implementing the Euler and Milstein schemes on
thc Geometric Brownian motion (5), the
following obtained results were presented in
graphs and tables (Table -1 and Figure 2). The
maplc generated GBM with timesteps 100 having
5 rcplications are the already cxisting drift and
volatility; while the Euler gencrated GBM with
timesteps 100 having 5 replications are the newly
generated drift and volatility.

Table 1. Explicit Euler approximations for the GBM.

n 1 2 3 4
t 0.5 1 1.5 2
Sn 0.945 0.86 0.85 0.84

n = number, t = time and S, = State Variable.

Table 2. Milstein approximations for the GBM.

n 1 2 3 4
¢ 0.5 1 1.5 2
S, 1.2 1.46 1.65 0.68

n = number, { = lime and S, = State Variable.

DISCUSSION

The explicit Euler and Milstein schemes have
been employed to solve the Geometric Brownian
Motion cquation. It was done successively with
MAPLE 18 based on the following rclations:

(i) The parameter 5o defines the initial value of
the underlying stochastic process, which is a real
constant.

(ii) The parameter y is the drift. In the simplest
casc of a constant drift i is a real number. Time-
dependent.drift can be set cither as an algebraic
cxpression or as a Maple procedure. If g is given
as an algebraic expression, then the parameter t
should be'passed to specify which variable in u
should be used as a time variable.

(iii) The parameter o is the volatility. Dissimilar
to thc drift parameter, the volatility can be
constant or time-dependent. Unlike drift, -
volatility can involve other (onc-dimensional)
stochastic variables.

(iv) The scheme options specify the

()
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Figure 2. PathPlot for one-dimensional Brownian motion with constant drift and

volatility using the Euler scheme.
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Figure 3. Path plot for one-dimensional Brownian motion with constant dnift and
volalility using the Milstein schemo.
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discretization technique used for simulation of
this process. The standard Euler and Milstein
schemes were used. When a scheme is set to
unbiascd the transition density was used to
simulate a value s (t + dt) given S (t). This
scheme is appropriate in the case of a time-
dependent drift and/or volatility.

(v) In the multi-dimensional case, the drift and
the volatility paramcter must be constant. The
drift parameter must be specified as a Vector
and the volatility paramcter must be a
symmetric matrix that defines the covariance
between the individual components.

Now, discretizing a onc dimensional GBM via
explicit Euler scheme with constant drift and
volatility at T = 2 shows the cffect of random
walk in stock prices. It shows that the degree of
random walk is chaotic and as such with timely
variation of the drift and parameters can savage
the stock price situation. In like manner, the
GBM through explicit Milstcin scheme
produced a nearly centered process whose
random ‘walk is clustered with constant drift
and volatility parameters. This suggests that the
stock price situation will be likely savaged if

the stock price market is sabotaged.
e

Conclusion :
Numerical methods have been used to solve a
lot of complex mathematical formulations.
This is becausec most analytic methods are so
complex and difficult to implement. Stochastic
differential equations (SDEs) are no exception.
There are no precise analytic solvers for SDEs.
Numerically, SDEs arc often analysed through
computer simulation. Thus, this paper solves
the GBM equation by mecans of MAPLE 18
software, using both the explicit Euler and
Milstein schemes. This stochastic model is
mostly relevant in option pricing and stock
price analysis. The results have shown that the
drift and volatility arc the parameters that
determine system randomness and effects.
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