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This paper focused on the review of numerical methods for Stochastic Differential Equations (SDEs),
The basic theory of stochastic Taylor expansion and thc two main types of convergence; the strong
and weak convergence are discussed. The strong convergence uses the concept of the absolute error,
which is the expectation of the absolute value of the difference between the numerical approximation
and the true solution at a specific time. While in the weak convergence, we compute moments of the
solution and not to approximate individual paths of the solution. The Euler-Maruyama, Milstein and
Runge-Kutta methods were reviewed. Numerical illustrations were carricd out and compared. The

Runge-Kutta scheme gave the best result.
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Introduction

The motivation for the study is the
desire to understand better the numerical
solution of a non-linear Stochastic
Differential Equations (SDEs). A stochastic
differential equation (SDE) is a differcntial
equation in which one or more of the terms
is a stochastic process, resulting in a
solution which is also a stochastic process.
Typically, SDEs contain a variable which
- represents random white noise calculated as
the derivative of Brownian motion or the
Wiener process. However, other types of
random behaviour are possible, such as
jump processes.

The most common form of SDEs in
the literature is an ordinary differential
equation with the right hand side perturbed
by a term dependent on a white noise
variable.

In most cases, SDEs are
understood as continuous time limit of the
corresponding stochastic difference

equations. This understanding of SDEs is
ambiguous and must be complemented by
an ‘'interpretation". The most famous
interpretations are provided by Ito and

dX, = B(X.)dt + d(X.)dB,

for ¢ € [0,7], with initial value yo€R. The
stochastic process X = {X,0<t<T} is
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Stratonovich calculi, with the former being
most frequently used in mathematics and
quantitative finance and furnishes a very
important tool of constructing diffusion
processes. (Akinbo, Faniran, and Ayoola,
2015).

As more realistic mathematical
models become required to take into
account random effects and influences in
real world systems stochastic differential
equations (SDEs) have become essential in
the accurate description of such situations.
Since SDEs rarely have explicit solutiens,
approximate numerical methods are vital in
order to make their implementation viable
Due to features, of the stochastic calculus the
numerical analysis of SDE’s differs in some
key areas from the alrcady well-developed
arca of the numerical analysis of ordinary
differential equations, but much of this
theory can be extended to the stochastic
case also (Burrage, Burrage, Tian, 2004)

Consider a onc dimensional stochastic
differential cquation (SDE) of the form
below;

(1)

assumed to be a unique solution of the SDE
(1) - which consists of a slowly varying
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component governed by the drift coefficient  component characterized by the diffusion
@() and a rapidly fluctuating random  coefficient O(-).
: The SDE can be written in integral form as
t - .

Xe= Xo+ f, p(X,)ds + J':Od)(Xs)st (2)
The first integral of the SDE (2) represent the Lebesque intcgrhl and the second integral is the
Ito or Stratonovich stochastic integral with respect to the Brownian motion or Wienner
process B = {B,,0 < t < T}which is a rcal-valued continuous process. A solution X, is said
to be unique if any other solution (X,) is indistinguishable from (X,), that is.

{PX) = (X)Vtp<t<T}=1

For the purpose of this work we assume that equation (2) refers to the Ito form. The
Stratonovich SDE can be denoted by the symbol o in front of the dB; By means of a simple
tranformation, one can move between the two caculi. The solution of the Ifo equation (1) can
be written as the solution of the Stratonovich equation

dX, = ¢(X)dt +‘ ¢(X,) ° dB, (3)
which has the modified drift function . o
B(X) = B(X) — 2 dX)P'(X), . (4)

»
[}
assuming @ exists. The Stratonovich calculus follows the usual rules of deterministic
calculus, whereas the Ité calculus conveniently relates to martingale theory but has its own

stochastic chain rule, the Ité formula. This states that for a twice differentiable function f of
the solution of (1) we have

df (Xo) = (f' XU + £ (X2 (Xe)dt) + f'(X)p(X)dB, (5)

for 0 <t <T. For the case of additive  subtraction of a correction term from the
noise the two forms of stochastic calculus  given one. It was observed that different
coincide (note that a constant drift term iterative schemes for the numerical
will cause the second term to vanish in the solution of stochastic differential equations
transformation (4)). For the most part of  converge to different solutions for the
this work, we concentrate on the Itd form,  same noise sariple “and ifitial condttion.
as much of the literature is based on this  This is in contrast to their deterministic
form of calculus. All of the above counterparts for ordinary differential
statements can be extended to higher  equations, which converge to the same
dimensions, but for simplicity the basic  solution. ) ‘
theory is outlined in one dimension. , Kloeden, and Platen (1992), have
Kloeden and Pearson™ (1977), discussed - extensively *abbit * numtical
proposed a method for the numerical solution of stochastic differential equations
solution of It0 stochastic differential in detail. Platen (1999), buttressed this with
equations by means of a second-order  the discrete time strong and weak
Runge-Kutta iterative scheme rather than approximation methods for the numerical
the less efficient Euler iterative scheme. It methods to get the solution of stochastic
requires the Runge-Kutta iterative scheme differential equation
to be applied to a different stochastic The aim of the work is to review and
differential  equation  obtained by understand better the various techniques
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necessary for numerical solutions involving  Kutta iterative scheme which is more
stochastic  differential equations and efficient with a high rate of convergence
compare the numerical solutions of the Itd than the less efficient Euler-Maruyama
form by means of second order Runge- iterative scheme and the Milstein scheme.

2 Stochastic Taylor Expansion
Consider a 1-dimensional ODE.

ZXe= 0(X) (6)

with initial value X,,, for ¢ €[ty T] where 0 < to < T. The equivalent integral form of
cquation (6) can be written as:

; Xe= Xep + [ ¢ (X)ds (7)

provided ¢(X,) is smooth enough and have a linear growth bound.

Let f: R = R be a continuously differentiable function, then by chain rule we have:

LX) = SX) 5 f(Xe), ®)
using the operator, say,
D= ¢ ©®)
integrating equation (8), we have
fX) = f 6K + f,, Df(X)ds, ¥ te[toT] (10)
In particular, when f(x) = x, we have
Df = ¢,
D*f = D(Df) = D¢,

D*f = D(D*f) = D(D¢) = D¢,
D*f =D(D*f) = D(D*¢) = D¢,

'an = Dﬂ-—l¢

and therefore equation (10) reduces to

Xe = Xeg + [, ¢ (X)ds an
that is to equation (7).
Considering the relation (10) to the function f = ¢ in the integral of (11), we have
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s Xk L SX,) + ft Do (X, | ds

Xe = X¢, + 0(Xy) ds+f fqu (X,)dzds
o to

0

(12)

Again, applying (10) to the function f = D¢ in the double integral, we have

DH(X,) = DOX(ty)) + [ D2$(X)du
t

50 that

5 t s
Xe= Xe, +¢(Xs)f ds+D¢(Xtu)[ f dzds + Ry
to Lo “tp ,

with remainder

R; = L,J D2¢(Xu)dudzds

0

(13)

(14)

fort € [ty, T). For a general r + 1 times continuously differentiable function f: R — R this
method gives the classical Taylor formula in integral form:

FX) = fxe,) + Thor = gk f(Xe) + J, - f"’n”‘f(xs])ds; .ds,41(15)

for t €[ty,Tlandr =1,2,3,... .The
Taylor formula (15) has proven to be a very
useful tool in both theoretical and practical
investigations, particularly in numerical
analysis (Kloeden and Platen 1991). In
ordinary differential equations, much of the
deterministic numerical analysis is based on
manipulating and  truncating  Taylor
expansions.

Analogously, for SDEs we use a
stochastic Taylor expansion, with different
versions corresponding to the Ité and
Stratonovich forms of stochastic calculus.
We present the It version herc as the Ité
integrals in the cxpansion are ecasier to

express in terms of random variables,
(Platen, 1999) which form the basis for the
numerical examples presented later.

2.1 Ito-Taylor Expansion .o
The It6-Taylor expansion is based on
repeated iterations of the Itd formula.
Consider again the integral equation (2).
Note we require the terms @ and @ to satisfy
a linear growth bound and to be sufficiently
smooth. For any twice continuously
differentiable function f:R—R, Itd’s formula
gives:

t
fXe) = f(-’fr.,)+f (ﬁ(Xs)f (Xs)+ > P2 (X; )f”(Xs)) ds + L¢(Xs)f'(xs)d3s (16)

We introduce the operators D°and D‘ as

0

DOf = 2L 4102 TL = g 4 Lo2pn
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o (7 S 0|'_ ]
Dif = L = of

Rewriting equation (16) and substituting DYand D?, we have
: 0 ; 1,
fX) = f(X, )+ | Df(Xs)ds -+ | D f(Xs)dBy (17)
to to

Obviously, for / (x) = x, we have Df = @ and D'f = ®. In which case, equation (17)
reduces to the original 1té equation (2) for X,. We can apply the Ité formula to the function
f =@and f = ® that appear in equation (17) to obtain the following;

s s
O(X) = O(X.,) + | D OX,)dz + f D'o(X,) dB, (18)
to &

5 s
Q) = x,)+ [ DOz + [ Do) dB; (19)
tp to
substituting the relations (18) and (19) into the Ité equation (2), we obtain

t s s
Xe= Xy, + f [Q(Xt,,)+ DYO(X,)dz + | D'O(X,) dB, ]ds
to to ts

t 5 s
‘D(Xto) + DOGJ(Xz)dz + D1(D(X2) deJ dB;
to *

to

to

L .o t L 5 t s
= Xe, +0(X,,) f ds + f f DOP(X,)dzds + f 1) 19(X,) dB,ds + X,
to to Lo

t
+ d(X,,) f dB, + f f ’D"tD(XJ)dde f f D'd(X,) dB,dB
. to to

= Xi,+ O(Xe,) [, ds +®(Xeo) [ dBs + R (20)

where R is the remainder term, which is given as;

R= ftz _[;D"(D(Xz)dzds +

%

0" lo

t rs
f Dd(X,) dB,dB, 21)

DO(X,) dB,ds + f f DOD(X,)dzdB, +

Jet f = D'®, putting into equation (17), we have

t . t
DId(X,) = 1)1¢(Xt0) + | D'D'P(X;)ds +] DD (X) dB, (22)
to

to
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Substuting cquation (22) into cquation (20) we have:

tf
0ty

t
X, = KXo +0(X,,) ds+f
L

to

s t rs . ot
DO(X,)dzds + f [[Dt00K) dB.ds + &%) fr dB,
]

tg-fo

t rS t rs
5 f DOdX,)dzdB, +D'd(Xyg) f dB,dB,
tp“to

to “to

t r5 ru t £S5 ru
+ j f D'd(X,,)dB,dB;du + j f DD ®(X,,)dB,dBdB,
t0 Jtg “to t0 Jtg “tg

= X, + B(X,,) f; ds +®(X,,) f:ost + DI (Xy) f; f; dB,dB; + Ry (23)

Where R, is the remainder term, which is given as;

Ry=J; [, D°O(X,)dzds + i J;, D*O(X;) dB,ds + o [}, D°(X;)dzdB; +
fo I DO(X,)dB,dB, + [y, [} fo D' ®(Xe,)dB;dBsdu +

I I3 JoD°D (X, )dB,dB,dB, 24)

The properties of the Ité -Taylor expansion can further be expressed with the multiple I1té

integrals
t 4 t r§
j ds,f st.f dB,dB;
to tq ty 7t

and a remainder term involving the next multiple Ité integrals, but not with nonconstant
integrands. The Ité -Taylor expansion can be interpreted as a generalization of both the fté
formula and the deterministic Taylor formula.

3 STRONG TAYLOR SCHEMES/APPROXIMATIONS
To apply a numerical scheme to the SDE (1), we must first discretize our time interval [0,7],
using a fixed step-size A=T/N. This gives us a set of partition

0=T0< T1<"'<Tn<"‘<TN=T,

which we use to approximate our solution. We now present some of the theoretical bases of
different methods of numerical solution.

3.1  The Euler-Maruyama Method

We examine the stochastic Euler scheme for time discret approximation of Ité
processes and use the simulation of approximating time discrete trajectories to handle some
typical problems. One of the simplest time discrete approximations of the Ité process is the
Euler (or the Euler-Maruyama) Approximation. (Burrage, Burrage, and Mitsui, 2000)
Consider a stochastic process X = {X, ty < t < T} satisfying (1) for X, = X,. For a given
discretization

GBS e Sty =T,

of the time interval [to T], an Euler approximation is a continuous time stochastic process
Y= {Y(t)_ tgst< T] satisfying the iterative scheme
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Yner1 =¥ + o(Yn)An + ®(Y,,)AB,

(25)

with initial value Yy = X, where Yy, = Y(1,,), 40 = Tnsy — Tn and AB, = Bty4y — Bty for all
n = 0,12, N-1, of the Wicner process B = {B, t 2 0). From definition of the Wiener
Process, 1L I0HOWS Al eSS iicowacilo wie IHACPCHUCHl Udussian ranaoin variaoies with

mean E(AB,) = 0 and variancc E((AB,)?%) = A,

In general, the sample paths of an Ito
process inherit the irregularity of the sample
paths of its driving Wicner process and in
particular, their non-differentiability. In
cxamining the first three terms of the
stochastic Taylor cxpansion, wec sce that
these form the basis of the Euler-Maruyama
scheme upon evaluating the integrals,
yiclding A and AB respectively, (Kloeden
and Platen, 1992). For the case where the
diffusion term @ = 0 this reduces to the
ordinary dcterministic Euler scheme. The

3.2 Milstein Method

Euler-Maruyama method converges  with

strong order a =%. For drift terms the
Euler-Maruyama scheme has strong order
a = 1 For most other cases, however the
method provides a poor cstimate of the
solution, particularly in cases where the
coefficients are non-lincar, as is well
documented in the deterministic Euler case.
For more satisfactory levels of accuracy
higher order schemes are required.
(Mahony, 2006).

Consider the Ité -Taylor expansion (23) and add to the Euler-Maruyama scheme (25) the

additional term

t »8
O(Xee)® (Keo) f f dB,dB, = b(X,,)® (X, )l
Ly “tp

= cb(Xw)d)'(Xw)%((AB)z - 4))

then we obtain the Milstein scheme

Yasr = Yo + O(F)A + O(Y)AB + S O(K)® (V) ((AB)? - 4)) (26)

which has strong order of convergence o
=1,0. Thus, with the addition of just one
more term to the Euler scheme to form the
Milstein scheme we increase the strong
convergence order from 0=0.5 fo o=1.0. For
®=0, the strong order a=1.0 of the Milstein
scheme corresponds to that of the Euler
scheme in the dcterministic case. The
additional term marks the point of
divergence of stochastic numerical ¢ .alysis
from  deterministic, (Milstein  2016).
Thercfore, the Milstein scheme is regarded
as thc proper gencralization of the
deterministic Euler scheme for strong
_convergence criterion because it gives the
same order of strong convergence as the
deterministic case.

132

3.3 Strong Taylor Scheme

The Euler-Maruyama scheme and  the
Milstein scheme can be considered to be
specific cases of the more gencral class of
methods  known as  strong  Taylor
approximations  formed by including
appropriately many terms from stochastic-
Taylor cxpansions. In principle, arbitrarily
many terms can be added to create schemes
of a desired level of convergence.
Khodabin, ct. al,, 2011). For practical
implementation, however, this is at the
cxpense of cvaluating more and more
derivatives and stochastic integrals, leading
to cxpressions that  become  very
complicated as the desired order of
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convergence increases, Kloeden, and Platen
(1991), Consider, for cxample, the Taylor

order 1.5 scheme for the SDE (1.1).

Yass = Yo + 0(%)A + O(V)AB + O(Y)0 (V) ; + O(Y)8 (H)lr,0p +
207 (@Y (Yy) + 3 07 (Y,)0" (V) + (otvn)aftvn) + §¢’-CYHJ¢"(Y,,)) Io) +

O(O(Y)P' (Yy) + (0 (Ya))?) a1

which, upon cvaluation of the integrals becomes

Vss = Yo + B()A + O(Y)AB + 2 O(Y,)D (Y,)(4B)? - 8) + O(¥,)®'(¥,)AZ +
L2 (B()0 () + 202 (V)0 (Y0)) + (DC)O (%) + 207(¥,)0(Y,) ) (4B - 42) +

D@D (¥) + (0'(Y,))?) (2 (8B)? - 4) 4B

The approach above, becomes
computationally more difficult as higher
order methods are required. Clearly, one of
the principal problems in the practical
implementation of higher order Taylor
approximations is that derivatives of higher
orders have to be evaluated. To this cnd, we

(27)

3.4  Runge-Kutta Schemes

The deterministic Runge-Kutta schemes
cannot be casily adapted to.an SDE, because
they only converge with a given strong
order towards the correct solution if they
also approximate the corresponding strong
Taylor scheme, Milstein and Tretyakov

consider  another class of strong  (2005). Consider the onc dimensional case d
approximation methods known as stochastic = m =1 the implicit order 1.0 strong Runge-
Runge-Kutta schemes. Kutta scheme is
1
Yn+1 = Yo + O(Tns1s Ynsr)A + OAB + m ((D(Tn.'?) e (D){(AB)Z -4} (28)

with ¥, = Yy + O(Ypy)VA

This method is essentially an approximation of the Milstein scheme, and was one of the first
of a body of mecthods that avoid the nced to calculate derivatives, which is of particular
importance when implementing a method on computer.

Order 1.0 Strong Runge-Kutta Scheme

This scheme converges with strong order a =1.0 and are derivatives free and generally
appeared simply in their Stratonovich form.

Consider the following method:

Y=Yy
Yz = Yo + 8(Y1)A + O(Y,)AB,

Fus = Yo + 80(Y) + 88 (20(Y,) + F0(W) - ®

Similarly, we have the method known as two-step Runge-Kutta due to Burrage (1993) which
has an identical structure:

i B, o
Yo=Y, + 59(%)6 + §‘D('U1)AB.
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3
Foes = Yo + A (200Y) +20(Y)) + 8B (L0(yy) + 5 0w (30)

And finally the‘ method due to Higham, (2013) given by

Y=V 1
Yy = Yy 5 0(Y)AB, |
Yosr = Yo + A0(Y,) + AB(O(Yy)) (31)

All of these algorithms will certainly provide a good first approximation to the solution of an
SDE, and arc relatively easy to implement compared to higher-order Taylor schemes such as

7).

4 Strong And Weak Convergence

The solutions of stochastic differential using the absolute crror criterion, i.e. the
equation are not explicitly known, so we try  expectation of the absolute value of the
to discover them by simulation. If the  difference between the approximation and
solutions are known explicitly, then we can ~ the Ité process at the time T, that is
calculate the crror of an approximation

& = E(|Xr = Y(T)D), (32)

which gives the measurc of the pathwise  has no effect and the expectation in (32) is
closeness at the end of the time interval [0, suficient. The criterion (32) then reduces to
T). When the diffusion coefficient ® =0 and  the deterministic absolute error criterion
the initail valuc is deterministic, randomness ~ (global truncation error). (Burrage, 1995).

4.1 Strong Convergence Y% with maximum step size § converges
The concept of strong convergence uses the  strongly to the exact solution X with order «
concept of the absolute error criterion (32). >0 at time T1f

We say that a discrete time approximation
lim E(|Xr - Yé(r)|)=o0 (33)

In order to assess and compare different time discrete approximations, we need to know their
rates of strong convergence. We say that a discrete time approximation Y¢ converges
strongly with order a > 0 at time T if there exists constant K < co which does not depend on 8,
and &y > 0 such that

£(8) = E(|xr - Y8(T)|) < %8° (34)

for cach & € (0,8) and for sufficiently  has order 1, while the strong order of Euler-
stepsize 8. This definition gencralizes the  Murayama method for SDE is of order é

standard convergence caterion for ordinary . G
is fact was proved in Higham (2000).
differential equations. Although the Euler P 8 ( )

method for ordinary differential equations
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4.2 Weak Convergence

We say that a general time discrete approximation Y4 corresponding to a time discretization
(7)s converges weakly to X at time T as 8]0 with respect to a class C of the text function
g:R? - R if we have

lim E|(9(Xr)) - E(g (Y3(M))| = 0 (35)
for all g € C. If K contains all polynomials, this definition implies the convergence of all
moments, so thcoretical investigations involving it will require the existence of all moments.
In the deterministic case with a zero. diffusion coefficient and a non-random initial value,

cquation (35) with g (x) = x reduces to the usual deterministic convergence criterion, just as
the strong convergence critcrion (33) does.

We say that a time discrete approximation Y converges weakly with order y > 0 to X at time
T as 8]0 if for each polynomial g, there exists a positive constant C, which does not depend
on 6 and a finite 65 > 0 such that

E|(g(Xr)) — Eg (Yo(M)))| < cov (36)

for cach § € (0,8,). The Euler approximation usually converges with weak order B=1, ¢n
contrast with the strong order y =0.5.

The strong and weak convergence criteria lead to the development of different time discrete
approximations which are only efficient with respect to one of the two criteria. This fact
makes it important to clarify the aim of a simulation before choosing an approximation
scheme.

5 Weak Approximation Methods

As we alrcady mentioned, it is not always
necessary to simulate individual trajectories
of a solution of a SDE, sometimes only
information about moments or other

required. Within this section we discuss
numerical methods that  focus  on
approximating the probability distributions
of solutions of SDEs, allowing us to handle
wide classes of functionals. We then need to

functionals may be all that is required, in
which case weak convergence is all that is

5.1 Weak Euler Approximation

The weak convergence criterion (36) allows
us more degrees of freedom in constructing
a discrete time approximation than the
strong convergence criterion (34). For
instance, under weak convergence, the
random increments, AB of the Brownian

P(AB = +VA) =

we obtain the simplified Euler method

yn+1 = Yn + Q(Yn)An + (D(Yn)ﬂgn

study the weak order of convergence of
several stochastic numerical methods.

motion can be replaced by simpler random
variables, AB which are similar to these in
distribution. By substituting the N(0,A)
Gaussian distributed random variable AB in
the Euler approximation (25) by an
independent two-point distributed random
variable AB with

(37

(38)

The main focus for this choice of the two-point random variable AB is that its first two
moments match the corresponding ones for AB. It can be shown that, under a sufficiently
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regularity conditions, this method (38) converges with weak order f=1.0. This weak order is
higher than the strong order y=1.0 achicved by the Euler approximation (25).

52  Weak Taylor Scheme

As with strongly convergent scheme, we  probability mcasurc of the underlying Ité

can derive more accuratc wecak Taylor  process, rather than about its sample paths.

schemes by including the multiple If we want to construct a weak Taylor

stochastic intcgrals from the stochastic  scheme of order 2.0 in the It6 casc all terms

Taylor expansion. However, the objectives  with single and double integrals need to be

is to obtain more information about the included from the Ito-Taylor expansion,
resulting in the  following  scheme

I
Yoer = Yo + 0(Y)A + O(Y,)AB + (I)(Yn)‘h'(yn)ﬂ(l.l) + (D(Yn)d(yn)u(ljﬂ) +

102 (0(%,)0 (V) + 202 (V)0 (V) + (0,0 (V) + 302 (V)0 (V) ) Lo

which, upon evaluation of the integrals becomes

Yarr = Yo + (V)4 + O(Y,)AB + %“’(Y,,)«IY(Y.,)((AB)Z — A) + O(Y,) D (¥,)AZ
+ laz (@(Y )A'(Y )+1q:2(v )R°(Y ))
2 n n 2 n n
+ (@(Y.,)m'(vn) + %w" (Y.,)m"(v.,)) (ABA — AZ) (39)

We still obtain a scheme of weak order B = 2.0 if we replace the random variable AZ in (39)
by AB. Here AB might be a three-point distributed random variable with

P(AB = +V3R) ==  and P(AB =0) = (40)

Note that the first four moments of AB match the corresponding ones of AB. By

approximating all triple Ito integrals in the order §=3.0 weak Taylor scheme, a simplified
order 3.0 weak Taylor scheme was derived by Platen (1984), with the form

1 LA, ,
Yoer1 = Yo + 0(Y)A + O(Y,))AB + E(D(b ((AE)Z - A) + O AZ + %((M -+ %(Dzd) )
B el -
+ (am) +50%0 )(ABA —a%)

' ' 1 2" 1 2. ' ' 1 2 "
+ GJ((M) + 00 +E<I) d>)+zd> (cbcb + Q0 +-2-tb tb)

: BAZ
+o (%' + %d)2d)") ) (MZA )

R T , Y .
+ (a)(wca +00 4 2020 +0(00) +%q,z(q,m)..) ((AB)6 A)

' 1 PPN l 2 ‘ 1 iailis A3
+ (000 #3090 + 50700 +50%0))
. 17 il AB
+ ©(00) ((aB) —-_SA)? (41)
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Here AB and AB can be chosen, for instance, as correlated zerp mean Guassian random
varibles with

E(AB)" = A, E((a2)") = §  E(AZAB) =92i (42)

We note that the weak higher-order Taylor schemes involve higher-order derivatives and it
would be desirable to have derivative free or Runge-Kutta-type weak schemes.

5.3  Weak Runge-Kutta Mcthods
A weak sccond-order Runge-Kutta approximation that avoids derivatives in drift and the
diffusion coefficients is given by the algorithm

Yurr = Yo+ (B(7) + 0%)) + 5 + (0¥ ") + 0(%, 7)) 22 4
(@(¥a*) - (¥ ) ((aB,)" - A);% (43)

with

Vo = Yy + 0(V,)A + O(Y,)AB,
and

Yo £ =Y, + 0(Y)A + o(Y,)VA

The random variable AB can be chosen as before in (43)

Weak Runge-Kutta type methods are not as well developed as other areas of the numerical
analysis of SDEs. It is still a relatively open-ended area, with many developments taking
place only recently.

6 Some Numerical Results and Implementation Issues

We now address some of the practical issues ~ gauged. To this end we, introduce a linear
arising from the usage of some of the test equation. This equation is often used as
numerical schemes mentioned by presenting it has multiplicative noise, has an explicit
their numerical results and their  solution, and is used to model asset prices in
implementations. It is informative to have  financial mathematics and it is of the It6
an equation with a known solution so that  form

the accuracy of a numerical scheme can be

dX, = AX,dt + pX.dB,, X(0) = X, 0<t<T (44)

and has the explicit solution
X: = Xoexp ((A—%pz)t +,uB,) ' (45)

for t€[0,7] and the given Brownian motion. B = (B, t = 0)

We first consider a number of strong  numbers, with zero mean and variance equal
solution methods and compare their to the step-size of the discretized time
numerical solution with the explicit one, for  interval when generating the exact solution.
an individual sample path of the solution. ~ When comparing a numerical
We use a random number generator that  approximation to an individual path of the
produces normally distributed random  explicit solution we must use this same set
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of random numbers in order to keep the
approximation and the path consistent.

By interpreting the results given by a
scheme that uses a random number
generator we are assuming that errors in the
generator, or random number ius, are

generate a normally distributed number and

multiply it by +/A. For the additional
random variable AZ in (41), we must satisfy
propertics (42) using the following fact: If
Gy and G, are two independent Gaussian

g i . : iables, the
negligible. To generate an increment with random MDA n
mean=0 and Variance =A we need simply to

L2 1
AW=[A and AZ=503(G |+ NGZ) (46)

form a pair of random variables with the appropriate propertics. For a strong order 2.0 Taylor
scheme as found in Akinbo, Faniran, and Ayoola (2015) these same increments arc used.

The strong versions of the Euler- Maruyama seherm the Mllstem scheme, the Taylor order
1.5 scheme and the Runge-Kutta method due to Platen (1993) were implemented to produce
the following graphic, which gives a visual guide to the accuracy of the schemes. The

methods were implemented over =1, with time-step A==2 4, parameter values A=2, p=1 and

initial condition Xy=1, to produce Figure 1.
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Figure 1: Path-wise accuracy of numerical schemes with step-size A=2"4,

The schemes secem to be consistent with the their strong order convergence measures, i.e. the
strong order 1.5 Taylor scheme appears to be the best approximation, while the Euler method
(strong order 0.5) appears to be the poorest. If we consider the same parameter values but a

finer time-step A=2"7 we can see the results in Figure 2.
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Figure 2: Path-wise accuracy of numerical schemes with step-size A=2""

As the step-size becomes smaller the
numerical solution appcars to match the true
solution more accurately, as indicated in
Figure 2. In order to test this strong
convergence we can consider how the crror
at the endpoint is dependent upon the step-
size and plot the results on a log-log scale.
The resulting plot should be a straight line
of slope equal to that of the order of strong
convergence. This idea was verified for the
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Milstein Approximation
4 . v .

K1d “31‘ i;
TR
L B DR
‘' iﬁ‘ ! J'lk:]"j\\
. i |
- W N {
2+ li"_.,‘f i | ‘;.“.
R‘ !ﬁ‘.# 1‘ ! by i
i y
1k / \
[ = True Solution S
Mistein approximation | "
GD 02 0.4 0.6 08 |
t
Platen Runge-Kutta Approximation
4
4 |
i
3 Lo
Ly A
] |’ | a i
- ¥ i l f
;2 . u'. ‘Iu i [ '.;-
"'
[ True Solution _
___Piaten approximation
Uu 02 04 06 08 1

t

same four methods checked above and
ensure that the slopes are correct sample
lines of the appropriate slope were plotted
for comparison. Figure 3 indicates the
results. The correct orders of 0.5, 1.0, 1.5
and 1.0 all appear to be verified. Further
confirmation by using a least squares fit for
the appropriate  power-law  was  also
calculated
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Figure 3: Strong Convergence for Various Numerical Methods.

We present the results of using the above
methods to calculate the mean of the
solution of (44). While we see the solution
1s non-smooth along individual trajectories
(for A=2 and p=1), as indicated by Figures 1
and 2, the mean of the solution is a smooth

To illustrate the advantage of using weak
order schemes with simpler random
variables, we can compare the results of
computing the mean of the solution of (44)
with a weak method versus a strong method.
As a simple example we consider the Euler
scheme. The weak and strong versions of
this method have an identical structure but
The advantages of using a weak scheme for
certain purposes arc clear; similar results to
strong methods are produced but the scheme
is computationally much simpler. Much
time would we wasted unnecessarily
computing moments of a solution using
strong ordcr schemes. The weak order 2.0

140

plot. Figure 4 indicates the results of
ensemble averaging over 1000 cxperiments,
where the true average is plotted also. The
length of time required for cach calculation
was dependent upon the complexity of the
algorithm, as expected.

different random vanables arc used to
generate the appropriate Weiner increments.
The expected value of the solution was
computed in both cases and compared with
the true expected value as shown in Figure
5.

Taylor scheme (42) can bc used to
approximate the expected valuc of the
solution in a similar manner. As expected,
the scheme provides a much better
approximation of the true mcan of the
solution, with a very small endpoint error
that decreases with the step-size as expected
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Figure 4: E(X) for Solution of (44)

The question of stability for this cquation
has been well analysed in Higham (2013).
Upon cxamining the solution, we can sce
that the questions of mean-squarc and
asymptotic stability: can be answered in
~terms of the parameters A and p in the

lim 1
BN Z)=0Re(A)+ <0
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explicit solution (45). In stability analysis
we usually consider the more general case
where these paramcters are allowed to be
complex. We can characterize m-mean-
square stability for the solution by the

following: !

47

Similarly the necessary criteria for asymptotic stability for this particular solution is given by

the following:
lim

o EUX(N)=0 withProbability 1 Re+ %“.13-:.0 (48)

To examine mean-square stability for the Euler-Maruyama method, ‘we can solve (44)
numerically over [0; 20] for mean-square stable parameter values and different time-steps.

1
.Only A=7

3 appears to
provide the desired behavior, as shown in Figﬁre 5. To examinc asymptotic stability, we can
compute a single Brownian path over a long time period [0.5000] with the same step-sizes

; : 1 1
We perform 500000 experiments for the time-steps A=1, 5 and 2

: . 1
and asymptotically stablc parameter values. Here we see that again only A= 7 produces a path

that decays to zero as desired.
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E(X) for Strong and Weak Euler
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Figure 5: £(X) as computed by strong and weak Euler methods

7 Conclusions

Numerical methods for the solution of
stochastic differential cquations arc cssential
for the analysis of random phenomena.
Strong solvers are necessary when exploring
characteristics of systems that depend on
trajectory-level properties. Several
approaches exist for strong solvers, in
particular Taylor and Runge-Kutta type
mcthods, although both increase greatly in
complication for orders greater than one.

This paper has discussed some techniques
for exploring the behavior of stochastic
differential equation, taking into
consideration the Brownian Motion which
served as a basis in finance for computing
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